Optimization of a Chondrogenic Medium Through the Use of Factorial Design of Experiments
نویسندگان
چکیده
The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.
منابع مشابه
Production of L-Asparaginase by Serratia marcescens SB08: Optimization by Response Surface Methodology
This paper describes optimization method that combines the Plackett-Burman design, a factorial design and the response surface method, which were used to optimize the medium for the production of L-asparaginase by Serratia marcescens SB08. Four medium factors, from out of 11 medium factors, were screened by Plackett-Burman design experiments and subsequent optimization process to find out the o...
متن کاملEnhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors
Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...
متن کاملEnhanced Production of Insulin-Like Growth Factor I Protein in Escherichia coli by optimization of five key factors
Abstract Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. The major objective of this study is over- production of recombinant human insulin-like growth factor I( rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. Up to now E. coli expression system has been widely us...
متن کاملOptimization of significant factors on the microbial decolorization of azo dye in an aqueous medium by Design of Experiments
Currently, the reduction of reactive dyes present in the textile effluent is a big challenge due to the threat to the environment. Existing physical and chemical methods contains many drawbacks. In the present scenario microbial reduction pays much attention and current focus of research. Therefore, the present study isolated dye decolorizing bacterium Exiguiobacterium aurantiacum (TSL7) from a...
متن کاملApplication of Taguchi’s experimental design method for optimization of Acid Red 18 removal by electrochemical oxidation process
Background: Electro-oxidation is developed as an electrochemical method to overcome the problems of the conventional decolorization technologies and is an appropriate alternative for the treatment of colored wastewater from various industries. The purpose of this study was to evaluate the efficiency of the electrochemical oxidation process in removal of chemical oxygen demand (COD) and Acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2012